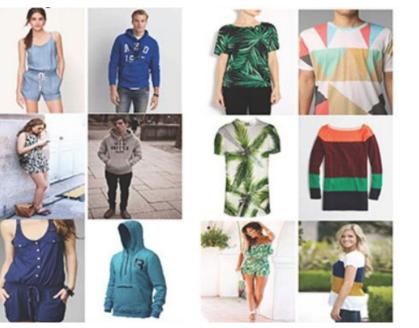
Are Labels Needed for Instance Incremental Learning?

Visual Instances

Self-driving car: Same object, different instances (i.e. bikes)

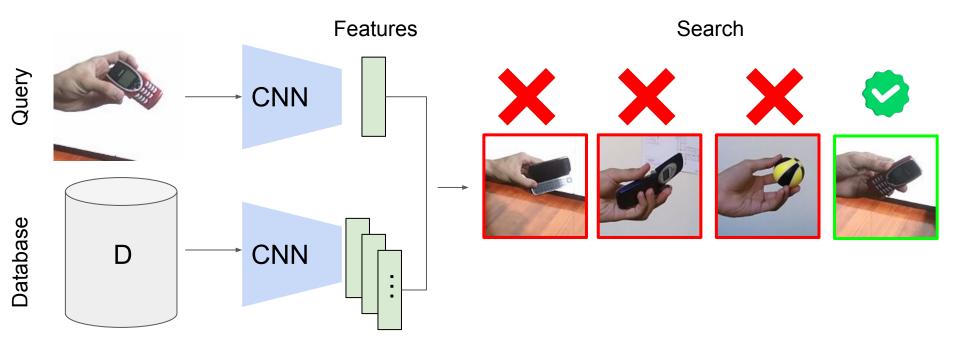
Visual Instances

Fashion



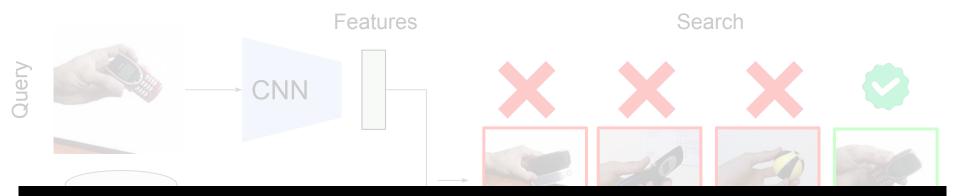
Retail: Same object, different instances (i.e. Clothing, Car brands, etc.)

Visual Instance Learning



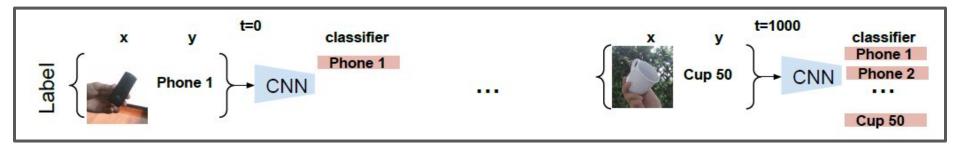
Visual instance learning aims to search for a given instance query in a database.

Visual Instance Learning



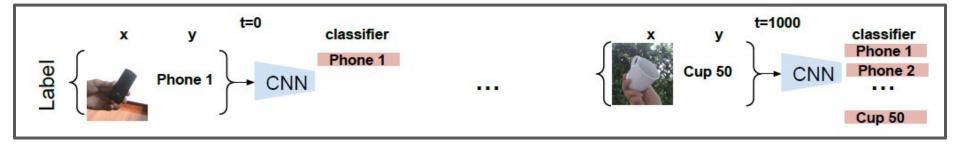
Instance learning is performed *offline*, however is unrealistic \rightarrow Privacy \rightarrow Incremental Learning.

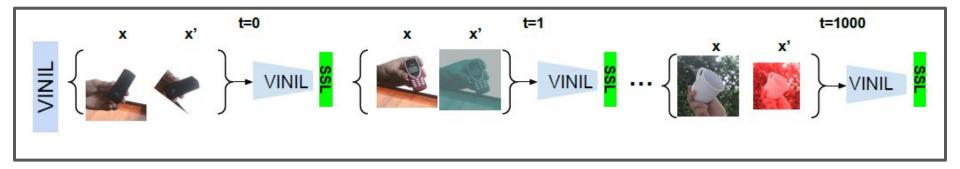
Visual Incremental Instance Learning



How can we learn instances in a scalable, label-free and less forgetful manner?

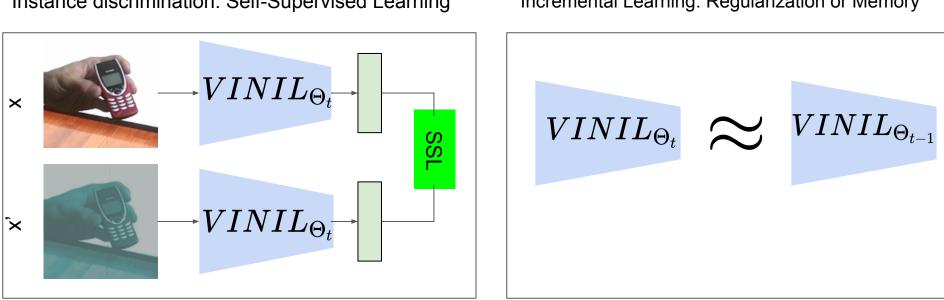
Visual Self-Incremental Instance Learning (VINIL)





VINIL leverages Self-Supervised Learning to be: Scalable and Label-free while forgetting less.

VINIL: Objective



Instance discrimination: Self-Supervised Learning

Incremental Learning: Regularization or Memory

 $\mathcal{L} = w * \mathcal{L}_{inst} + (\mathbf{1} - w) * \mathcal{L}_{incr}$

VINIL: Implementation

Method	Method Supervision		Memory	Loss			
SGD	Label-supervised	(x,y)	n/a	CE(y, y')			
SGD	Self-supervised	(x)	n/a	BT(x,x')			
Replay	Label-supervised	(x,y)	$\frac{(x^m, y^m)}{(x^m)}$	$CE(y, y') + CE(y^m, y^{m'})$ BT(x, x') + BT(x^m, x^{m'})			
Replay	Self-supervised	(x)	~ /				
EwC EwC	Label-supervised Self-supervised	(x,y) (x)	n/a n/a	$CE(y,y') + Reg(\Theta,y')$ $BT(x,x') + Reg(\Theta)$			

Instance Learning: Cross-Entropy (CE) with label-sup. | BarlowTwins (BT) with self-sup.

Incremental Learning: SGD (Fine-tuning) | Memory Replay | Elastic Weight Consolidation (EwC)

Experimental Setup

~Datasets~

Core-50: Hand-held Objects | 10 Categories | 50 Instances Per-category | 120k training & 45k test images

iLab-20M: Turntable Dataset | 10 Categories | 90 Instances Per-category | 125k training & 31k test images

~Metrics~

Accuracy: Top-k retrieval, Forgetfulness: Drop in Accuracy across Learning Sessions.

~Protocol~

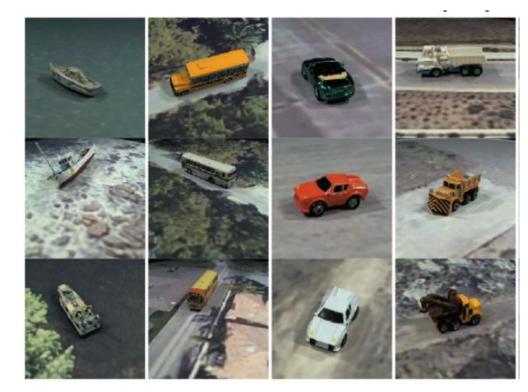
Tasks: 5 main tasks (2 categories each, bus, car, etc.) | N-instances per task (i.e. 100 for Core-50)

k-NN: All methods are evaluated via k-NN (N=100) | Activations of Last ResNet-18 Layer (layer4)

Datasets

Core-50

iLab-20M



Exp 1. How Does VINIL Compare to Label-supervision?

Method	Supervision	Cor	e-50	iLab-20M			
		Accuracy (†)	Forgetting (\downarrow)	Accuracy (†)	Forgetting (\downarrow)		
SGD	Label	71.450	22.436	89.340	6.500		
SGD	VINIL	74.914	4.802	90.398	0.000		
Replay	Label	88.180	6.741	84.464	5.696		
Replay	VINIL	67.677	10.095	90.543	0.000		
EwC	Label	75.117	18.268	87.690	4.535		
EwC	VINIL	73.011	2.167	90.655	0.000		

VINIL is more accurate (in 4/6 settings) and much less forgetful (in 5/6 settings) without using any labels.

Label-supervised variant leverages memory, whereas VINIL is distracted by memory.

Exp 2. Can VINIL Generalize Across Datasets?

	Train on \Longrightarrow	Core-50	iLab-20M		iLab-20M	Core-50	
	Test on \Longrightarrow	Core-50	Core-50	-3	iLab-20M	iLab-20M	5
Method	Supervision	Accuracy	Accuracy	$\%\Delta(\downarrow)$	Accuracy	Accuracy	%∆(↓)
SGD	Label	71.450	59.850	16	89.340	67.249	24
SGD	VINIL	74.914	66.704	10	90.398	76.302	15
Replay	Label	88.180	55.692	36	84.464	69.412	17
Replay	VINIL	67.677	61.857	8	90.543	76.125	15
EwC	Label	75.117	59.030	21	<mark>87.69</mark> 0	70.087	20
EwC	VINIL	73.011	70.648	3	90.655	75.793	16

VINIL learns more generalizable feature space, exhibiting much lower drop in accuracy.

Label-supervision overfits with memory to the training source (36% relative drop rate!).

Why Does VINIL Perform Well?

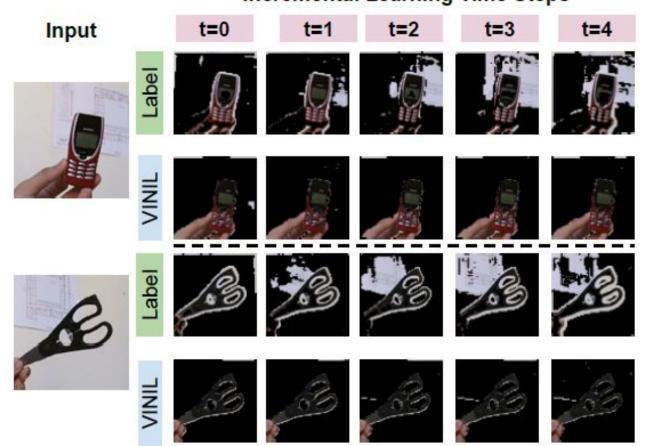
Analysis 1: VINIL Leverages Incoming Stream of Tasks

Label (SGD)

VINIL (SGD)

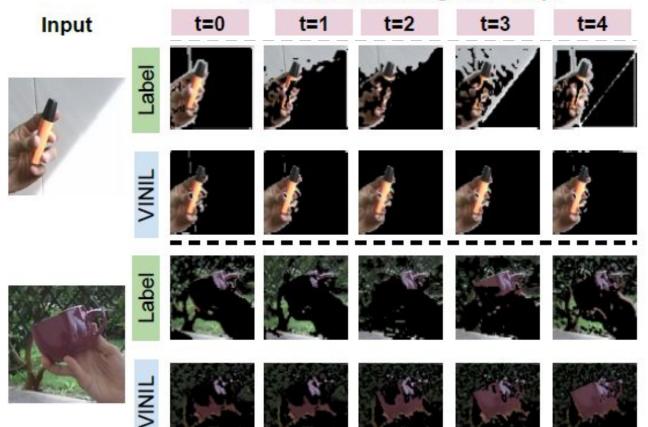
0	96.19	85.25	81.97	86.22	83.77	o	75.18	85.25	91.50	93.41	95.27
ask 1	74.19	77.59	70.08	70.30	69.10	ask 1	63.80	68.95	72.24	73.02	74.13
Accuracy per Task 2	83.16	83.71	90.34	83.47	81.66	Accuracy per Task 2	66.55	81.37	87.78	87.53	88.06
3 Acc	93.58	86.62	84.92	95.42	88.08	3 Acci	71.49	82.92	92.58	95.81	96.33
4	94.36	84.13	77.51	89.85	94.17	4	72.01	81.00	93.54	95.95	98.20
	T=0 T=1 T=2 T=3 T=4 Incremental Time Steps						T=0	T=1 Incr	^{T=2} emental Time S	T=3 teps	T=4

Analysis 2: VINIL Focuses on the Object

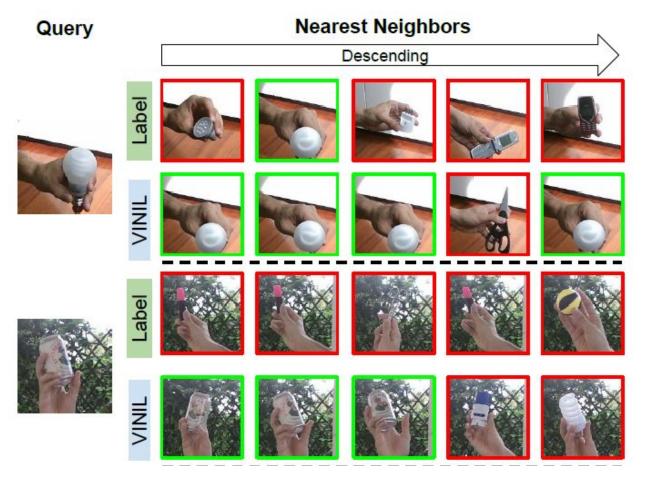


Analysis 2: VINIL Focuses on the Object

Incremental Learning Time Steps



Analysis 3: VINIL Maintains Instance-level Variation



We proposed VINIL: A self-incremental visual instance learner.

VINIL is more scalable, generalizable, label-free and less forgetful in comparison to label-supervision.

VINIL does so by accumulating representations and focusing on instance-level variation.